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Abstl'Kt-An exact solution is presented for the elastic buckling of a polar-orthotropic annular plate
subjected to uniform shearing stresses along the boundaries. Detailed results for the critical load are given
for a wide range of material parameters. plate geometry arid various boundary conditions. The limiting case
of an infinite strip is also discussed and compared with earlier results for the buckling of infinitely long
rectangular plates under shearing stresses.

INTRODUCTION

Elastic buckling of isotropic annular plates, under the action of uniform shearing stresses, has
been investigated already by Dean[l] in 1924. A later paper by Federhofer and Egger[2]
presents a study of the effect of radial thickness variations upon the critical load.

Here we show that Dean's exact solution can be extended to the case of polar-orthotropic
plates with uniform thickness. The boundary conditions considered are any combination of
clamped and simply supported edges. Detailed results for the buckling load are displayed over a
wide range of material parameters and plate geometry.

Also, the limiting problem of an infinite strip is briefly discussed and its solution is shown to
agree with earlier studies,[3-5], of infinitely long rectangular plates under shearing stresses.

ANALYSIS

An annular plate with inner radius a, outer radius b and uniform thickness h, is subjected to
uniform self-equilibriated shearing stresses along the boundaries. The plate is elastic with
polar-orthotropy described by the constitutive relations

~2 =E~r+Er#6
0'6 =E"Er +E"E6

'Tr6 =G'Y"

(Ia)

(lb)

(lc)

where, with the usual notation (0'" U/h 'T,,) are the stress components in the polar system (r, 6),
(f" f~, 'Y") are the associated engineering strain components and (Em E66, E", G) the
corresponding elastic moduli. t The origin of the polar system is located at the center of the
plate.

It is now a matter of ease to verify that the prebuckling stress field is simply a state of pure
shear, conveniently written as

(2)

where A is a constant. Note that the field (2) is independent oj material properties.
Turning to the buckling problem, denoting by w the normal deflection during buckling, we

tNote that for an isotropic plate
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have by a standard formulation that

-sA~ (aw -~) = 0 (3)
r ao ar r

where

(E E S)
(Em EM!> A)

" 6, ErfJ +20 .

If the material is isotropic then E, = B8 Eland (3) agrees with eqn (7) in[l].
The boundary conditions considered here are either a clamped edge where

oW
w =0 and -=0ar

or a simply supported edge where

02W vow . Erii
W = 0 and~+- - = 0 with v =-.

ar r ar Err

(4)

(5)

(6)

Differential equation (3) in conjunction with boundary conditions (5), (6) form an eigenvalue
problem for S.

The solution of (3) is now written in the form

w = Re{r4>(r)ei,"8} m integer.

Inserting (7) into (3) results in an ordinary differential equation for et>(r) with the solution

(7)

(8)

(9)

where the llj are integration constants and the XI are the four distinct roots of the characteristic
equation

Compliance with boundary conditions-two at each edge-leads to four homogeneous
algebraic equations with constants Ai as unknowns. A non·trivial solution (buckling) of that
system is assured by equating to zero the 4 x 4 determinant formed by the coefficients of the
system. Tile critical load (eigenvalue) is then obtained as the lowest value of S that will nullify
the coefficient's determinant.

Denoting the radii ratio by
ap=-
b

{I 0)

we find, after some algebraic manipulations, that the buckling equations for the boundary
conditions considered here are as follows: (i) both edges clamped

=0 (lla)

(ii) inner edge clamped, outer edge simply supported

) 1 1 J
x\(x\+l+p) X2(X2+l+v) X3(X3+l+v) x.c(x.c+ l + v )

(lIb)
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(iii) outer edge clamped, inner edge simply supported

p". p"z p"3 p"
XI(XI + 1+ v)p"· X2(X2 + 1+ V)p"l X3(X3 + 1+ V)p"3 XiX4 + I + v)p'" =0 (lie)

1 1 I I
XI X2 X3 X4

(iv) both edges simply supported

p'" p"z p"3 p"
XI(XI +1+V)p"l X2(X2 + 1+ v)p"z X3(X3 + 1+ V)p"3 X4(X4 + 1+ v)p'"

=0. (lId)
1 1 1 1

XI(XI + 1+ v) X2(X2+ I + v) x3(x3+ 1+ v) X4(X4 +I + v)

NUMERICAL RESULTS

Equations (II) have been solved numerically over a wide range of representative material
parameters (En E., v) and plate geometry (p). The numerical scheme used is straightforward
though somewhat laborious; for a given number of circumferential waves (m) an initial value of
S is chosen and the corresponding four roots of eqn (9) are evaluated. The latter are used, with
a given value of p to compute the value of the determinant (II). The procedure is then repeated
iteratively with new values of S (but fixed m and p) until the smallest root of (II) is discovered.
That root is finally minimized with respect to the integer m, yielding thus the critical values of S
that will cause buckling of the plate. It is worth mentioning that in all cases treated here the
roots of (9) were found to be distinct-in accord with representation (8). (The case of equal
roots requires a separate treatment with the proper representation for q,(r».

Typical results for the critical value of S are shown in Figs. 1-4. For an isotropic plate with
clamped edges our results check with those obtained by Dean (Fig. I).
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Fig. I. Critical values of S. Both edges clamped.
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Fig. 2. Critical values of S. Inner edge clamped. outer edge simply supported.
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Fig. 3. Critical values of S. Inner edge simply supported. outer edge clamped.
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Fig. 4. Critical values of S. Both edges simply supported.
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Fig. S. Variation of S•• with £2 when E, = I and with Eo when £2 = I. The upper curve is for a plate with
clamped edges and the lower curve for a plate with simply supported edges. In both cases bla =20.
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Taking the isotropic case as a reference we see from Figs. 1-4 that, as expected, the
buckling stress increases with any of the two parameters E" E8• A more important conclusion is
that increasing the radial parameter E, has a greater effect on the critical load as compared to a
similar increase of the circumferential parameter E8• Just to give a few examples, for the
clamped plate (Fig. I) with bla =5 we have Sa = 192.5 for E, =5 Ee = 1 and S" == 90.5 for
E, = I E8 =5. Keeping the radial parameter constant (E, = I) we have to increase Ee up to 30
(!) in order to obtain the same buckling stress as with E, = 5 E8 = I. Similarly, with bla = 31 we
have S" == 74 for E, = 10 Ee = I but Sa == 35.5 for E, = I E8 = 10 - here again Ee has to be
increased up to 30 (with E, = I) in order to obtain buckling at the same stress level as with
E, = 10 Ee = I. This effect is more emphasized in Fig. 5 which shows a typical dependence of
Sa on E, with Ee = r and on Ee with E, = I. These findings indicate the advantage of using
radial fibers (or radial ribs) in strengthening composite annular plates against shear-buckling.

THE LIMITING PROBLEM

The buckling behaviour of the annular plate as alb ~ 1 should approach that of an infinitely
long orthotropic rectangular plate subjected to shearing stresses at the boundaries. This limiting
problem has been discussed by Dean [I] for isotropic plates and here we may essentially adopt
his reasoning.

A direct evaluation of Sa as alb ~ I, using the previous procedure, becomes impossible
since the wave number m, the roots of (9) Xi, as well as Sa itself increase without limit. Instead,
we introduce the geometrical parameter

b-a
8=-­

a

so that &~ 0 as alb~ I. Now we define the quantities

(12)

(3)

expecting £, M, (J" to remain finite as 8 ~ O.
Substituting definitions (13) into (9) and passing to the limit 8~ 0 gives the characteristic

equation

where

E=VE,Ee .

(14)

(15)

Likewise, it is a straightforward task to obtain the limiting forms of eqns (II). Observing the
simple limit

(16)

we find that the limiting buckling equations are as follows:
(i) both edges clamped

e{l eQ e~ e"
£l e{1 £2 eQ £3e{J £4e" =0

I I I I
~I b £3 ~4

(ii) one edge clamped the other simply supported

(l7a)

e{J

~/e{J

I
6

=0 (l7b)
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(iii) both edges simply supported

57

=0. (17c)

The ~i are here the four distinct roots of the characteristic equation (14). Note that the moduli
ratio v =ErelErr does not appear now in the buckling equations.

The critical values of u have been computed from (17) and (14) by the same numerical
procedure as the one used for the annular plate. The main differences between the two
problems are that uc, depends on a single material parameter Eand that M is now a continuous
variable.

To relate the critical eigenvalue Ucr to the applied shear stress (2), we note that at the limit

(18)

where I =b - a stands for the width of the plate. Combining now (2) with (4) and the third of
(13), and observing (18), gives the relation

(19)

Thus, once Ucr is known the buckling stress is readily obtained from (19).
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Fig. 6. Critical values of Ie. Infinitely long rectangular plate.

The numerical results are displayed in Fig. 6. For the sake of comparison with earlier work a
new factor k is introduced so that

8k - {U if E$i; 1
- ulvfE)jf E~ 1. (20)

The isotropic points (E =1) in Fig. 6 agree with those obtained in [3}. The curves for
orthotropic clamped and simply supported plates agree with earlier results presented in[4, 5J,
see also[6, 7]. The curve for the clamped-simply supported plate appears to be new.
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